
Journal of Applied Mathematics and Mechanics 72 (2008) 312–322

Contents lists available at ScienceDirect

Journal of Applied Mathematics and Mechanics

journa l homepage: www.e lsev ier .com/ locate / jappmathmech

The vibrations of a thin elastic orthotropic circular cylindrical shell with free
and hinged edges�

G.R. Gulgazaryan, L.G. Gulgazaryan, R.D. Saakyan
Yerevan, Armenia

a r t i c l e i n f o

Article history:
Received 6 February 2007

a b s t r a c t

The problem of the existence of natural oscillations of a thin elastic orthotropic circular closed cylindrical
shell with free and hinge-mounted ends and of an open cylindrical shell with free and hinge-mounted
edges, when the two boundary generatrices are hinge-mounted is investigated. Dispersion equations and
asymptotic formulae for finding the natural frequencies of possible vibration modes are obtained using the
system of equations corresponding to the classical theory of orthotropic cylindrical shells. A mechanism
is proposed by means of which the vibrations can be separated into possible types. Approximate values
of the dimensionless characteristic of the natural frequency and the attenuation characteristic of the
corresponding vibration modes are obtained using the examples of closed and open orthotropic cylindrical
shells of different lengths.

© 2008 Elsevier Ltd. All rights reserved.

It is well known that plane and flexural waves exist, independently of one another, at the free edge of a semi-infinite orthotropic plate.1–3

When the plate is bent, two of these types of motion are coupled, giving initially two new types of waves, localized at the edge (mainly
tangential and mainly flexural). Transformation of one type of wave motion into the other occurs at the free end of a thin cylindrical elastic
shell. In this transformation of the waves, complex distribution patterns of the frequencies of natural oscillations of finite and infinite
cylindrical shells with a free edge occur, depending on the geometrical and mechanical parameters of the shell.4–19

Using dispersion equations and asymptotic formulae for these dispersion equations, obtained below, by varying the geometry of the
shells and the mechanical properties of the material one can control the spectrum by shifting either the origin of the spectrum or the points
of condensation from the undesirable resonance region.20,21

1. Fundamental equations and formulation of the boundary-value problems

It is assumed that the generatrices of the cylindrical shell are orthogonal to the shell edges. Curvilinear coordinates (�, �), where
�(0 ≤ � ≤ l) and �(0 ≤ � ≤ s) are the length of the generatrices and the length of the arc of the directing circle (see the figure) respectively,
are introduced on the middle surface of the shell. The equations of the vibrations of a shell, which correspond to the classical theory of
orthotropic cylindrical shells are used, and are written in the chosen curvilinear coordinates �, �:
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(1.1)

Here u1, u2 and u3 are the projections of the displacement vector in the directions �, � and normal to the shell surface, respectively, R
is the radius of the directing circle of the middle surface, �4 = h2/12 (h is the shell thickness), � = �2�, where � is the angular frequency of
natural vibrations, � is the density of the material and Bij are the coefficients of elasticity.22

We will consider the following boundary conditions

(1.2)

(1.3)

(1.4)

(1.5)

Boundary conditions (1.2)–(1.4) correspond to the closed cylindrical shell; relations (1.2) express the free-edge conditions when � = 0,
Eqs (1.3) are the conditions of the hinge-mounted edge when � = l, and Eq.(1.4) are the vibration periodicity conditions, where s is the
total length of the directing circle of the middle surface. Boundary conditions (1.2), (1.3) and (1.5) correspond to a cylindrical shell of open
profile; relations (1.5) are the conditions for hinge mounting along the directrices � = 0 and � = s, where s is the length of the arc of the
circle of the middle surface between the hinge-mounted generatrices (see the figure).

It can be proved that problems (1.1)–(1.4) and (1.1)–(1.3), (1.5) are self-conjugate and have a non-negative discrete spectrum with a limit
point at + ∞ ([12], p.362).

2. Derivation and analysis of the characteristic equations

In the first, second and third equations of system (1.1) the spectral parameter � is formally replaced by �1, �2 and �3 respectively. For
subsequent calculations it is more convenient to reduce the system of equations (1.1) (with the changes indicated) to the following system
of equations
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(2.1)

where

(2.2)

We introduce the following notation: k = 2�n0/s, n0 ∈ N for a closed cylindrical shell and k = �/s for a cylindrical shell of open profile.
Suppose R−1 = kr0/2, where r0 is a dimensionless parameter. We will seek a solution of system (1.1) in the form

(2.3)

Here m is the wave number, usm and �sm are undetermined coefficients, and 	 is the undetermined attenuation constant. Conditions
(1.4) and (1.5) are then automatically satisfied, and the problems are solved in a similar way if the parameter k is given different values.
Substituting expressions (2.3) into system (2.1) we obtain

(2.4)

(2.5)

(2.6)

(2.7)
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Suppose 	j (j = 1,2,3,4) are pairwise different zeros of Eq.(2.6) with non-positive real parts. Then 	5 = −	1, 	6 = −	2, 	7 = −	3, 	8 = −	4

are also pairwise different zeros of this equation. Suppose (u(j)
1 , u(j)

2 , u(j)
3 ) are non-trivial solutions of system (1.1) of the form (2.3) with 	 = 	j

(j = 1,2,. . .,8) respectively. Representing the solution of problems (1.1)–(1.4) and (1.1)–(1.3), (1.5) in the form

and taking boundary conditions (1.2) and (1.3) into account, we obtain the following system of equations

(2.8)

Here

(2.9)

The superscript j in the brackets denotes that the corresponding function is taken when 	 = 	j.
In order that system (2.8) should have a non-trivial solution, it is necessary and sufficient that

(2.10)
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Numerical analysis shows that the left-hand side of this equality becomes small when any two roots of Eq. (2.6) become close to one
another. This considerably complicates the calculations and can lead to the appearance of false solutions. It turns out that the factor on the
left-hand side of Eq. (2.10), which approaches zero as the roots approach one another, can be separated out.

To do this we introduce the following notation

(2.11)

Here �̄4 = ¯̄�4 = ¯̄�3 = 0.
Suppose fn (n = 1,2,. . .,6) is a symmetrical polynomial of the n-th degree of the variables x1, x2, x3 and x4. It is well known that it can be

uniquely expressed in terms of elementary symmetrical polynomials. Putting

(2.12)

(2.13)

and performing elementary actions on the columns of determinant (2.10), we obtain

(2.14)



G.R. Gulgazaryan et al. / Journal of Applied Mathematics and Mechanics 72 (2008) 312–322 317

(2.15)
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Eq. (2.10) is equivalent to the equation

(2.16)

Taking into account possible relations between �1, �2 and �3, we conclude that Eq. (2.16) defines the frequencies of the corresponding
modes of vibration.

When �1 = �2 = �3 = �, Eq. (2.6) is the characteristic equation of system (1.1); when k = 2�n0/s, n0 ∈ N, m ∈ N Eq. (2.16) is the dispersion
equation of (1.1)–(1.4), and when k = �/s, m ∈ N it is the dispersion equation of problem (1.1)–(1.3), (1.5).

3. The asymptotic of dispersion equation (2.16) when r0 → 0

When using the previous formulae we will assume that 
1m = 
2m = 
3m = 
m = 
/m. Then, when r0 → 0 Eq.(2.6) is converted into the set
of equations

(3.1)

(3.2)

which are characteristic equations for the equations of plane and flexural vibrations of a plate, respectively.6,10,16 The roots 	/m of Eqs (3.1)
and (3.2) with non-positive real parts are denoted y1, y2 and y3, y4 respectively.

It was proved in Ref. 6 that when

(3.3)
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the roots (	/m)2 of Eq. (2.6) can be represented in the form

(3.4)

Under conditions (3.3), taking relations (2.9) and (3.4) into account and also the fact that

(3.5)

we can reduce Eq. (2.16) to the form

(3.6)

(3.7)

It follows from Eq. (3.6) that when �m → 0 Eq. (2.16) splits into the equations

(3.8)

Of these, the first two are dispersion equations of plane and flexural vibrations in the analogous problem of an orthotropic plate-strip
with free and hinge-mounted edges (k = 2�0/s) or a rectangular plate with free and three hinge-mounted edges (k = �/s). Plane vibrations
of a cylindrical shell correspond to the roots of the third equation; it manifests itself as a result of using the equation of the corresponding
classical theory of orthotropic cylindrical shells. When 
m > 1 the plane vibrations become non-decaying vibrations.

If y1, y2 and y3, y4 are the roots of Eq. (3.1) and (3.2) with negative real parts respectively, then when ml → ∞ Eq. (2.16) becomes the
equation

(3.9)

from which it follows that when �m → and ml → ∞, dispersion Eq. (2.16) splits into the following equations

(3.10)
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Of these the first two are dispersion equations of flexural and plane vibrations of a semi-infinite orthotropic plate with free edge
(k = 2�n0/s) or of a semi-infinite orthotropic plate-strip with free end when there is a hinge-mounting on the side edges (k = �/s)
respectively.6,9,16 Consequently, for small �m and large ml, the roots of Eq. (3.10) are approximate values of the roots of Eq. (3.9).

4. The asymptotic of dispersion equation (2.16) when l→ ∞

When using the previous formulae we will assume that 	1, 	2, 	3, 	4, (the roots of Eq.(2.6)) have negative real parts. Then,
Eq. (2.16) can be reduced to the form

(4.1)

whence it follows that when l → ∞, Eq. (2.16) splits into the equations

(4.2)

The first of these, when m ∈ N, defines all kinds of localized natural vibrations of the free end of a semi-infinite orthotropic circular closed
cylindrical shell (k = 2�n0/s) or a cylindrical shell of open profile (k = �/s) when there is a hinge mounting on the boundary generatrices.6,9,16

If �m → 0, we have

(4.3)

(4.4)

Consequently, taking formulae (4.1), (4.3) and (4.4) into account, we conclude that dispersion Eq. (2.16) takes the form (3.9).
In Table 1 we show values of some roots (
m) of Eq. (3.8) for a perspex plate with the following mechanical parameters17

(4.5)

where h = 1/50, k = �/4, 1 and 0.7851 and l = 15.5. A numerical analysis shows that at the free edge of the plate-strip, when the elastic edge
is hinge-mounted, and at the free edge of a rectangular plate, when the remaining three edges are hinge-mounted, localized vibrations
may appear. When ml → 0 the frequencies of the localized vibrations at the free edge of a plate-strip and of a rectangular plate approach
the frequencies of a semi-infinite plate and the frequencies of a semi-infinite plate-strip respectively (see Table 1 and also Table 1 in Ref.
6).

Table 1

m L̄(�m) = 0, k = �/4 L̄(�m) = 0, k = 1 Ḡ(�m) = 0, k = �/4 Ḡ(�m) = 0, k = 1

l=15 l=5 l=15 l=5 m l=15 l=5 l=15 l=15

1 0.9652 0.9085 0.9708 0.9272 1
2 0.9777 0.9515 0.9798 0.9603 2
3 0.9808 0.9652 0.9816 0.9708 3
4 0.9817 0.9717 0.9820 0.9757 4 0.0403
5 0.9820 0.9754 0.9821 0.9783 5 0.0397 0.0504
6 0.9821 0.9770 0.9821 0.9798 6 0.0475 0.0605
7 0.9821 0.9792 0.9821 0.9808 7 0.0554 0.0705
8 0.9821 0.9802 0.9821 0.9813 8 0.0633 0.0806
9 0.9821 0.9808 0.9821 0.9816 9 0.0712 0.0907
10 0.9821 0.9813 0.9821 0.9818 10 0.0791 0.1008
11 0.9821 0.9815 0.9821 0.9820 11 0.0871 0.1108
12 0.9821 0.9817 0.9821 0.9820 12 0.0950 0.1209 0.1209
13 0.9821 0.9819 0.9821 0.9821 13 0.1029 0.1310 0.1310
14 0.9821 0.9820 0.9821 0.9821 14 0.1108 0.1411 0.1411
15 0.9821 0.9820 0.9821 0.9821 15 0.1187 0.1187 0.1512 0.1512
16 0.9821 0.9821 0.9821 0.9821 16 0.1266 0.1266 0.1612 0.1612

m K3(
m) = 0, k = 0.7851 K3(
m) = 0, k = 1 17 0.1345 0.1346 0.1713 0.1713

93 0.1896 18 0.1424 0.1425 0.1814 0.1814
94 0.2848 19 0.1504 0.1504 0.1914 0.1914
95 0.3533 20 0.1583 0.1583 0.2015 0.2015
100 0.5694 90 0.7122 0.7122 0.9068 0.9068
105 0.7042 95 0.7518 0.7518 0.9572 0.9572
110 0.8031 100 0.7914 0.7914 1.0076 1.0076
115 0.8804 110 0.8705 0.8705 1.1084 1.1084
120 0.3008 0.9431 120 0.9496 0.9496 1.2091 1.2091
125 0.5035 0.9952 125 0.9892 0.9892 1.2595 1.2595
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Table 2

l m 
1 = 
2 = 
3 =
 
1 = 
2 = 0, 
3 = 
 
1 = 
2 = 
, 
3 = 0 
2 = 
3 = 
, 
1 = 0

k	0/m 
/m k	0/m 
/m k	0/m 
/m k	0/m 
/m

2 −0.0739 0.8372e
4 −0.0472 0.9791e
5 −0.0049 0.0396b −0.0049 0.0396b −0.0448 0.9810e −0.0049 0.0396b
6 −0.0098 0.0475b −0.0095 0.0475b −0.0440 0.9816e −0.0098 0.0475b
7 −0.0116 0.0554b −0.0116 0.0554b −0.0436 0.9817e −0.0116 0.0554b
8 −0.0125 0.0634b −0.0125 0.0633b −0.0435 0.9820e −0.0125 0.0633b
9 −0.0130 0.0712b −0.0130 0.0712b −0.0434 0.9820e −0.0130 0.0712b

15 10 −0.00133 0.0791b −0.0133 0.0791b −0.0434 0.9821e −0.133 0.0791b
100 −0.0138 0.7911b −0.0138 0.7911b −0.0433 0.9821e −0.0138 0.7911b
110 −0.0138 0.8702b −0.0138 0.8702b −0.0433 0.9821e −0.0138 0.8702b
120 −0.2153 0.3008n −0.2153 0.3008n −0.2258 0.3001t

−0.0138 0.9493b −0.0138 0.9493b −0.0433 0.9821e −0.0138 0.9493b
125 −0.1956 0.5035n −0.1956 0.5035n −0.2264 0.5021t

−0.0433 0.9821e −0.0433 0.9821e
−0.0138 0.9888b −0.0138 0.9888b −0.0138 0.9888b

5 −0.1113 0.8122e
15 −0.0434 0.9820e
16 −0.0074 0.1266b −0.0074 0.1266b −0.0434 0.9820e −0.0074 0.1266b
17 −0.0088 0.1345b −0.0088 0.1345b −0.0433 0.9821e −0.0088 0.1345b
18 −0.0099 0.1424b −0.0099 0.1424b −0.0433 0.9821e −0.0099 0.1424b
19 −0.0106 0.1503b −0.0106 0.1503b −0.0433 0.9821e −0.00106 0.1507b

5 20 −0.0112 0.1582b −0.0112 0.1582b −0.0433 0.9821e −0.0112 0.1582b
100 −0.0138 0.7911b −0.0138 0.7911b −0.0433 0.9821e −0.0138 0.7911b
110 −0.0138 0.8702b −0.0138 0.8702b −0.0433 0.9821e −0.0138 0.8702b
125 −0.2153 0.3008n −0.2153 0.3008n −0.2258 0.3001t

−0.0138 0.9493b −0.0138 0.9493b −0.0433 0.9821e −0.0138 0.9493b
125 −0.1956 0.5035n −0.1956 0.5035n −0.2264 0.5021t

−0.0433 0.9821e −0.0433 0.9821e
−0.0138 0.9888b −0.0138 0.9888b −0.0138 0.9888b

In Table 2 we show some dimensionless characteristics of the natural values of 
/m and the characteristics of the attenuation factors
of the corresponding forms k	0/m for orthotropic cylindrical perspex shells of open profile with mechanical parameters (4.5) and the
following geometrical parameters: R = 40, r0 = 0.0637, h = 1/50, k = 0.7851 and b = 4 (b is the distance between the boundary generatrices),
and l = 15.5. The moduli of elasticity E1 and E2 correspond to directions along the generatrices and directrices respectively.

Table 3


1 = 
2 = 
3 =
 
1 = 
2 = 0, 
3 = 
 
1 = 
2 = 
, 
3 = 0 
2 = 
3 = 
, 
1 = 0

k	0/m 
/m k	0/m 
/m k	0/m 
/m k	0/m 
/m

2 −0.0973 0.9559e
3 −0.0612 0.9785e
4 −0.0073 0.0403b −0.0073 0.0403b −0.0569 0.9811e −0.0073 0.0403b
5 −0.0136 0.0504b −0.0136 0.0504b −0.0558 0.9817e −0.0136 0.0504b
10 −0.0174 0.1008b −0.0174 0.1008b −0.0551 0.9821e −0.0174 0.1008b
11 −0.0175 0.1108b −0.0175 0.1108b −0.0551 0.9821e −0.0175 0.1108b
12 −0.0176 0.1209b −0.0176 0.1209b −0.0551 0.9821e −0.0176 0.1209b

15 13 −0.0176 0.1310b −0.0176 0.1310b −0.0551 0.9821e −0.0176 1.1310b
20 −0.0176 0.2015b −0.0176 0.2015b −0.0551 0.9821e −0.0176 0.2015b
90 −0.0176 0.8565b −0.0176 0.9068b −0.0551 0.9821e −0.0176 0.9068b
95 −0.2692 0.3533n −0.2692 0.3533n −0.2878 0.3524t

−0.0176 0.9572b −0.0176 0.9572b −0.0176 0.9572b
−0.0551 0.9821e −0.0551 0.9821e

100 −0.2373 0.5694n −0.2373 0.5694n −0.2888 0.5678t
−0.0551 0.9821e −0.0176 1.0076b −0.0551 0.9821e −0.0176 1.0076b

2 −0.1170 0.9355e
11 −0.0554 0.9819e
12 −0.0058 0.1209b −0.0074 0.1209b −0.0553 0.9820e −0.0074 0.1209b
13 −0.0098 0.1310b −0.0105 0.1310b −00552 0.9821e −0.0105 0.1310b
14 −0.0119 0.1411b −0.0119 0.1411b −0.0551 0.9821e −0.0119 0.1411b
15 −0.0133 0.1511b −0.0133 0.1511b −0.0551 0.9821e −0.0133 0.1512b
16 −0.0143 0.1612b −0.0145 0.1612b −0.0551 0.9821e −0.0145 0.1612b

5 17 −0.0150 0.1713b −0.0152 0.1713b −0.0551 0.9821e −0.0152 0.1713b
20 −0.0163 0.2015b −0.0163 0.2015b −0.0551 0.9821e −0.0163 0.2015b
90 −0.0176 0.9068b −0.0176 0.9068b −0.0551 0.9821e −0.0176 0.9068b
95 −0.2692 0.3533n −0.2692 0.3533n −0.2878 0.3524t

−0.0176 0.9572b −0.0176 0.9572b −0.0176 0.9572b
−0.0551 0.9821e −0.0551 0.9821e

100 −0.2373 0.5694n −0.2373 0.5694n −0.2888 0.5678t
−0.0551 0.9821e −0.0176 1.0076b −0.0551 0.9821e −0.0176 1.0076b
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The results shown in Table 3 correspond to closed cylindrical perspex shells with mechanical parameters (4.5) and the following geo-
metrical parameters: R = 40, r0 = 1/20, h = 1/50, k = 1, and l = 15.5. The following quantities were taken as the characteristic of the attenuation
factors

(4.6)

In Tables 2 and 3, after the characteristics of the attenuation factors and the natural frequencies we indicate the type of vibrations: b is
predominantly flexural, e is predominantly plane, n is a new type of vibration, and t is predominantly torsional.

In Tables 2 and 3 the case 
1 = 
2 = 
3 = 
 corresponds to problems (1.1)–(1.3), (1.5) and (1.1)–(1.4). The case 
1 = 
2 = 0 and 
3 = 
 corre-
sponds to problems (1.1)–(1.3), (1.5) and (1.1)–(1.4), in which there are no shear components of the inertial force, i.e. we have predominantly
a flexural type of vibrations. The case 
1 = 
2 = 
 and 
3 = 0 corresponds to a predominantly plane type of vibrations, while 
2 = 
3 = 
 and

1 = 0 corresponds to a predominantly flexural-torsional type of vibrations. The first frequencies of natural vibrations, localized at the free
edge of cylindrical shells, where there is a normal component of the inertial force, are the vibration frequencies of a predominantly flexural
type of vibrations.

Calculations show that, together with the first frequencies of a quasi-transverse type of vibrations, there are also frequencies of non-
decaying vibrations of the quasi-shear type. These vibrations become Rayleigh-type vibrations as m increases.

When �m → 0, the natural vibrations for (1.1)–(1.4) and (1.1)–(1.3) and (1.5) are split into quasi-transverse and quasi-shear vibrations.
The frequencies of these problems approach the frequencies of the similar problems for a plate-strip and a rectangular plate respectively.
The quasi-transverse type of vibrations become non-decaying vibrations as m increases. The dimensionless characteristics 
m of the natural
frequency of the quasi-shear vibrations approaches the root of the Rayleigh equation K2(
m) = 0 (for perspex 
m

(2) ≈0.9821).
When ml→ ∞ the natural frequencies of problem (1.1)–(1.4) approach the natural frequencies of vibrations localized at the free end

of a semi-infinite closed cylindrical shell, while the natural frequencies of problem (1.1)–(1.3) and (1.5) approach the natural frequencies
of vibrations localized at the free edge of a semi-infinite cylindrical shell of open profile when there is a Navier hinge mounting on the
boundary generatrices.

Depending on the parameter a2m2, no more than two new types of vibrations occur, with characteristics solely for cylindrical shells, due
to the longitudinal and torsional components of the inertia.6,10,16 For predominantly shear type vibrations of cylindrical shells (
1 = 
2 = 
,

3 = 0) in addition to “Rayleigh” type plane vibrations, there may also be no more than two new vibrations, also due to longitudinal and
torsional components of the inertia.6,10,16 When there is no normal component of the inertia, shear localized vibrations appear at lower
wave numbers m. Vibrations of the predominantly flexural-torsional type (
2 = 
3 = 
, 
1 = 0) for fairly large m can be split into quasi-
transverse and predominantly torsional vibrations. When m increases further, the quasi-transverse type vibrations become non-decaying
vibrations (the parameters of the non-decaying vibrations are not given in the table; the gaps in the table correspond to positions where
no frequencies of decaying vibrations are detected.
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